热门搜索: 网通设备类天线 基站天线 智慧型抄表类天线 车载天线
全部
- 全部
- 产品管理
- 新闻资讯
- 介绍内容
- 企业网点
- 常见问题
- 企业视频
- 企业图册
详解5g的六大关键技术-ayx爱游戏官网注册
发布时间:
2019-08-06 17:27
早在2013年12月,第四代移动通信(4g)牌照发放,4g技术正式走向商用。与此同时,面向下一代移动通信需求的第五代移动通信(5g)的研发也早已在世界范围内如火如荼地展开。5g研发的进程如何,在研发过程中会遇到哪些问题呢?接着往下看。
在移动通信的演进历程中,我国依次经历了“2g跟踪,3g突破,4g同步”的各个阶段。在5g时代,我国立志于占据技术制高点,全面发力5g相关工作。组织成立imt-2020(5g)推进组,推动重大专项“新一代宽带无线移动通信网”向5g转变,启动“5g系统前期研究开发”等,从5g业务、频率、无线传输与组网技术、评估测试验证技术、标准化及知识产权等各个方面,探究5g的发展愿景。
在5g研发刚起步的情况下,如何建立一套全面的5g关键技术评估指标体系和评估方法,实现客观有效的第三方评估,服务技术与资源管理的发展需要,同样是当前5g技术发展所面临的重要问题。
作为国家无线电管理技术机构,国家无线电监测中心(以下简称监测中心)正积极参与到5g相关的组织与研究项目中。目前,监测中心频谱工程实验室正在大力建设基于面向服务的架构(soa)的开放式电磁兼容分析测试平台,实现大规模软件、硬件及高性能测试仪器仪表的集成与应用,将为无线电管理机构、科研院所及业界相关单位等提供良好的无线电系统研究、开发与验证实验环境。面向5g关键技术评估工作,监测中心计划利用该平台搭建5g系统测试与验证环境,从而实现对5g各项关键技术客观高效的评估。 为充分把握5g技术命脉,确保与时俱进,监测中心积极投入到5g关键技术的跟踪梳理与研究工作当中,为5g频率规划、监测以及关键技术评估测试验证等工作提前进行技术储备。下面对其中一些关键技术进行简要剖析和解读。
1、高频段传输
移动通信传统工作频段主要集中在3ghz以下,这使得频谱资源十分拥挤,而在高频段(如毫米波、厘米波频段)可用频谱资源丰富,能够有效缓解频谱资源紧张的现状,可以实现极高速短距离通信,支持5g容量和传输速率等方面的需求。
高频段在移动通信中的应用是未来的发展趋势,业界对此高度关注。足够量的可用带宽、小型化的天线和设备、较高的天线增益是高频段毫米波移动通信的主要优点,但也存在传输距离短、穿透和绕射能力差、容易受气候环境影响等缺点。射频器件、系统设计等方面的问题也有待进一步研究和解决。
监测中心目前正在积极开展高频段需求研究以及潜在候选频段的遴选工作。高频段资源虽然目前较为丰富,但是仍需要进行科学规划,统筹兼顾,从而使宝贵的频谱资源得到最优配置。
2、新型多天线传输
多天线技术经历了从无源到有源,从二维(2d)到三维(3d),从高阶mimo到大规模阵列的发展,将有望实现频谱效率提升数十倍甚至更高,是目前5g技术重要的研究方向之一。
由于引入了有源天线阵列,基站侧可支持的协作天线数量将达到128根。此外,原来的2d天线阵列拓展成为3d天线阵列,形成新颖的3d-mimo技术,支持多用户波束智能赋型,减少用户间干扰,结合高频段毫米波技术,将进一步改善无线信号覆盖性能。
目前研究人员正在针对大规模天线信道测量与建模、阵列设计与校准、导频信道、码本及反馈机制等问题进行研究,未来将支持更多的用户空分多址(sdma),显著降低发射功率,实现绿色节能,提升覆盖能力。
3、同时同频全双工
最近几年,同时同频全双工技术吸引了业界的注意力。利用该技术,在相同的频谱上,通信的收发双方同时发射和接收信号,与传统的tdd和fdd双工方式相比,从理论上可使空口频谱效率提高1倍。 全双工技术能够突破fdd和tdd方式的频谱资源使用限制,使得频谱资源的使用更加灵活。然而,全双工技术需要具备极高的干扰消除能力,这对干扰消除技术提出了极大的挑战,同时还存在相邻小区同频干扰问题。在多天线及组网场景下,全双工技术的应用难度更大。
传统的蜂窝通信系统的组网方式是以基站为中心实现小区覆盖,而基站及中继站无法移动,其网络结构在灵活度上有一定的限制。随着无线多媒体业务不断增多,传统的以基站为中心的业务提供方式已无法满足海量用户在不同环境下的业务需求。
d2d技术无需借助基站的帮助就能够实现通信终端之间的直接通信,拓展网络连接和接入方式。由于短距离直接通信,信道质量高,d2d能够实现较高的数据速率、较低的时延和较低的功耗;通过广泛分布的终端,能够改善覆盖,实现频谱资源的高效利用;支持更灵活的网络架构和连接方法,提升链路灵活性和网络可靠性。目前,d2d采用广播、组播和单播技术方案,未来将发展其增强技术,包括基于d2d的中继技术、多和联合编码技术等。
4、密集网络
在未来的5g通信中,无线通信网络正朝着网络多元化、宽带化、综合化、智能化的方向演进。随着各种智能终端的普及,数据流量将出现井喷式的增长。未来数据业务将主要分布在室内和热点地区,这使得超密集网络成为实现未来5g的1000倍流量需求的主要手段之一。超密集网络能够改善网络覆盖,大幅度提升系统容量,并且对业务进行分流,具有更灵活的网络部署和更高效的频率复用。未来,面向高频段大带宽,将采用更加密集的网络方案,部署小小区/扇区将高达100个以上。
与此同时,愈发密集的网络部署也使得网络拓扑更加复杂,小区间干扰已经成为制约系统容量增长的主要因素,极大地降低了网络能效。干扰消除、小区快速发现、密集小区间协作、基于终端能力提升的移动性增强方案等,都是目前密集网络方面的研究热点。
5、新型网络架构
目前,lte接入网采用网络扁平化架构,减小了系统时延,降低了建网成本和维护成本。未来5g可能采用c-ran接入网架构。c-ran是基于集中化处理、协作式无线电和实时云计算构架的绿色无线接入网构架。c-ran的基本思想是通过充分利用低成本高速光传输网络,直接在远端天线和集中化的中心节点间传送无线信号,以构建覆盖上百个基站服务区域,甚至上百平方公里的无线接入系统。c-ran架构适于采用协同技术,能够减小干扰,降低功耗,提升频谱效率,同时便于实现动态使用的智能化组网,集中处理有利于降低成本,便于维护,减少运营支出。目前的研究内容包括c-ran的架构和功能,如集中控制、基带池rru接口定义、基于c-ran的更紧密协作,如基站簇、虚拟小区等。
全面建设面向5g的技术测试评估平台能够为5g技术提供高效客观的评估机制,有利于加速5g研究和产业化进程。5g测试评估平台将在现有认证体系要求的基础上平滑演进,从而加速测试平台的标准化及产业化,有利于我国参与未来国际5g认证体系,为5g技术的发展搭建腾飞的桥梁。
相关文章--- 如何解决2.4g无线技术频段拥挤的问题呢?
上一页
上一页
2019-03-19 10:20
企业的办公场所是一个忙碌而经常变化的环境,随着员工的移动,wi-fi信号可能被障碍物遮挡。另外,wifi信号还可能被周围其它wifi天线网络信号或者员工的蓝牙设备所干扰,而平板电脑、笔记本、智能手机和其它wifi设备在进入wifi网络范围后的自动连接动作(就算这些设备并不需要真正使用wifi天线网络),也会影响整个网络的性能体验。这一切干扰的结果就是wifi天线网络丢包严重,导致无线设备必须重新发
2019-03-19 10:12
wifi天线具有哪些突出的优势?首先,无线电波覆盖范围很广,基于蓝牙技术的无线电波覆盖范围很小,半径约为50英尺左右?大约15米,而wi-fi半径可以达到300英尺?不用多说,在大约100米之外的地方,办公室也可以在整个建筑中找到。 wifi天线具有哪些突出的优势?据报道,该产品可以是目前的wi-fi无线网络300英尺?近100米的通信距离延伸到4英里。6.5公里呢?其次,虽然无线通信质量的wi
2019-03-19 10:02
现在我们大家应该都有自己的手机吧,手机已经和我们的生活密不可分了,给我们大家提供着很多的服务,那么谈到手机,不知道我们大家究竟对手机的构造了解多少呢,手机是由很多的零件构成的,手机有主板,摄像头,天线,屏幕等,每一个构件都是需要设计的,不知道我们大家平时有没有听说手机天线的设计,今天飞宇信手机天线厂家小编就来普及一下知识,讲解一下手机天线设计的方法。 1.拿到手机,初步看下手机长度(理想状态是四
2019-03-18 10:20
wifi天线的方向性是怎样的?无线电发射机输出的射频信号功率,经过馈线(电缆)输送到天线,由天线以电磁波方式辐射出去。wifi天线的方向性是怎样的电磁波抵达接纳地址后,由天线接下来(只是接纳很小很小一部分功率),并经过馈线送到无线电接纳机。可见,天线是发射和接纳电磁波的一个主要的无线电设备,没有天线也就没有无线电通讯。天线种类繁多,以供不一样频率、不一样用处、不一样场合、不一样请求等不一样情况下运
2019-03-18 10:15
wifi天线有怎样的作用?wifi天线可以分作两种,内置天线和外置天线,内置天线作用于手机电脑、投影仪,路由器等等。外置天线作用于路由器,机顶盒,基站,摄像头等等,很多人会有疑惑,这种wifi天线有什么作用呢。wifi天线有怎样的作用?天线是发射和接收电磁波的一个重要设备,天线把接收到的信号传给接收器之后输出。现在的路由器等很多产品都需要安装wifi天线,没有天线接受信号的能力就很差,容易影响上网
2019-03-18 10:01
室内电视天线和室外电视天线有什么区别?原理上没什么区别,都是接收或发射无线电信号。室外电视天线从接收上讲,信号太弱,不能穿透墙壁时,就要把天线安到室外,以利于接收信号,再用馈线把信号送到室内。从发射上讲,室外电视天线可以做得高些,以利信号覆盖更宽,当然也需要功率更大些。